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Main ingredients of our paper

Objective

...we would like to present a new methodology for computational
aerodynamics, and we would like this methodology to establish a new
direction for the field.

How to achieve that? (or “Road map” to presentation)

» Show quantitatively good/excellent results.
> Present main features of the method.
» Show hard figures of computational costs.
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Fig: C;, Cp, vs. angle of attack.

» Lift breakdown observed but no significant increase in drag.
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Key results I, lift breakdown

Case 2b / configd / Re=15.1M
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Fig: C, Cp, vs. angle of attack.

» Lift breakdown observed but no significant increase in drag.
> Refined result “approaches” measurements.



Key results II, stall prediction

Case 2b+3b / configd+configh / Re=15.1M
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Fig: C;, Cp, vs. angle of attack.

» “config4”, angle of attack « = 12°,21° and 22.4°.
» “config5”, angle of attack &« = 24°.

» Lift breakdown observed AND significant increase in drag for
“config5”, angle of attack & = 24°.



Re=15.1M

configd configh
Fig: Surface streamlines.

» Similar patterns along the wing.
» Stall cells growing towards the wing tip of “config5”.



Key results, summary

Case 2b / configd / Re = 15.1M

» lift breakdown...

» ...BUT no clear increase in drag! Worse match to experiments...

Case 3b / configh / Re = 15.1M

» lift breakdown...

> ...AND clear increase in drag! Better match to experiments...

Conclusion

Need full geometry (config5) to correctly predict experimental results.



Method highlights, DFS!

The General Galerkin method (G2)

» FEM with piecewise linear approximation in space and time.
> Fully unstructured meshes.

» Time-resolved method where numerical stabilization based on
the residual dissipates turbulent kinetic energy.

» Slip velocity boundary condition with small (zero) skin friction.

» Adaptive mesh refinement with respect to output of interest
using associated adjoint problem to estimate errors in output.

1Direct Finite Element Simulation



Method highlights, DFS

In other words

» Unstructured meshes ~ solve problems with complex
geometries.

» Time-resolved method ~ no turbulence modeling.
» Slip velocity boundary condition ~ no boudary layer mesh.

» Adjoint-based adaptive mesh refinement ~ cells put on the
right place, fewer cells, cheaper.



Method highlights, DFS

For U = (U, P) a weak solution, ¢ = (¢,0) a solution to a linearized
adjoint problem, and M(U) = ((U, §)) a mean value output, with ¢ a
weight function, we define the error estimate:

| M) —M(@)] = |((7 = 0,$))] < Eker, & |

with the error indicator:
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for each element K in the mesh 7, with stability weights w;, i =1, 2.



Method highlights, DFS

For U = (U, P) a weak solution, ¢ = (¢,0) a solution to a linearized
adjoint problem, and M(U) = ((U, §)) a mean value output, with ¢ a
weight function, we define the error estimate:
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for each element K in the mesh 7, with stability weights w;, i =1, 2.



Method highlights, DFS

For U = (U, P) a weak solution, ¢ = (¢,0) a solution to a linearized
adjoint problem, and M(U) = ((U, §)) a mean value output, with ¢ a
weight function, we define the error estimate:

| M) —M(@)] = |((7 = 0,$))] < Eker, & |

with the error indicator:
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for each element K in the mesh 7, with stability weights w;, i =1, 2.
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Method highlights, DFS

How do we generate the mesh?

Adaptive algorithm

1. For the mesh 7,;: compute primal and adjoint problem.
2. Compute error indicator for all cells
3. Mark 10% of the elements with highest “error indicator” for refinement.

4. Generate the refined mesh 7,,;1, and goto 1.

Initial mesh (angle of attack 12 °):
3.8M cells

Final mesh (after 4 adaptive refinements):
22.6M cells

= Compare, e.g., with committee’s medium mesh, 99M cells for half airplane!
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Method highlights, DFS

How do we generate the mesh?
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Method highlights, DFS

How do we generate the mesh?
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Method highlights, DFS

How do we generate the mesh?
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Method highlights, DFS

How do we generate the mesh"
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Adjoint velocity. Momentum residual.



Adjoint velocity. Momentum residual.



Marked cells refinement. Adjoint velocity.



More results, convergence

Case 2b / configd / Re=15.1M / Angle of attack 12°
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More results, convergence

Case 2b / configd / Re=15.1M / Angle of attack 21 °
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Computational resources

Lindgren at PDC/KTH

1,516 node Cray XE6.

Dual 12-core nodes (36,384 cores).
32 GB DDR3 per node.

Cray Gemini (3-D Torus topology).
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Simulation time

» 200, 000 core hours (adaptive algorithm for 1 angle of attack).
» 800,000 all simulations (12°,21°,22.4° and 24 °.).
» Roughly 1 month on 1,000 cores.






Conclusions

We were able to compute the flow around a full aircraft

model at high Re...
» ...stall prediction for config5.
» ...adaptive solution approaches experimental values.
» ...without boundary layer.
> ...with a time-dependent method.
> ...with fewer cells than anybody else.
> ..with (our own) open-source software.

Next, we would like to...

> .

..perform further simulations with config5.
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